行业新闻
LED点阵显示控制1原理与方案1.1原理对于点阵型LED显示可以采用共阴极或共阳极,本系统采用共阳极,其硬件电路如图1所示。
这样只需要将图形或文字的显示编码作为列信号跟对应的行信号进行逐次扫描,就可以逐行点亮点阵。
只要扫描速度大于24Hz,由于扫描时间很快,人眼的视觉有暂留效应,就可以看到显示的是完整的图形或文字。
图1硬件电路本次设计要完成基于单片机的LED点阵显示控制的设计,总体方案是以单片机为控制核心,通过行列驱动电路,在LED点阵屏上以左移方式显示文字。
在设计过程中驱动电路运用动态扫描显示,动态扫描简单地说就是逐行轮流点亮,这样扫描驱动电路就可以实现多行(比如16行)的同名列共用一套列驱动器。
由于静态扫描显示(并行传输)的局限性,故采用动态扫描显示(串行传输),显示模式用LED点阵屏模块作显示屏。
1.2总体方案本次设计单片机采用AT89C51,行电路使用逐行扫描的方式,列电路使用串入并出的数据传输方式,显示屏使用由16x16的点阵LED组成的点阵模块。
单片机行驱动器列驱动器电源1616LED点阵显示屏2系统硬件设计硬件电路大致上可以分成单片机系统及外围电路、列驱动电路和行驱动电路以及LED点阵阵列3部分,用到的芯片有单片机AT89C51,4线,带锁存功能的串入并出移位寄存器74LS595。
系统采用12MHz或更高频率的晶振,以获得较高的刷新频率,使显示更稳定。
P1口低4位与行驱动器相连,送出行选信号,P1.5~P1.7口则用来发送控制信号。
2.2时钟脉冲电路AT89C51的最高时钟脉冲频率已经达到24MHz,它内部已经具备了振荡电路,只要在AT89C51的两个引脚(即19、18脚)连接到简单的石英振荡晶体的2个管脚即可,同时晶体的2个管脚也要用30pF的电容耦合到地,如图3所示。
导体器件,当电流通过LED时,电子在半导体内部重新组合,产生能量并转化为光能,从而发光。
在正负极之间的电场的影响下,电子在经过二极管的过程中会重新组合,释放出能量,转化为光能而发光。
电的时间和电流强度,可以实现不同颜色的混合和变化,从而呈现出丰富的图像和文字。
总的来说,LED显示屏的工作原理是通过LED发光二极管的电流通过产生能量并转化为光能而发光,然后通过控制电路和扫描电路控制每个LED发光二极管的通电方式和时间,以呈现出所需的图像和文字。
led 直显原理LED直显(直发光显示)技术是一种采用LED(发光二极管)作为发光元件,通过电流驱动LED直接发出光来实现图像显示的技术。
LED直显技术具有高亮度、低功耗、长寿命、环保等优点,被广泛应用于各种显示场景,如户外广告、舞台灯光、交通指示等。
LED直显原理如下:1. 构造:LED直显屏幕由许多排列紧密的LED像素点组成。
2. 驱动电路:LED直显屏幕需要一个驱动电路来控制每个LED 像素点的亮度。
驱动电路的关键部分是恒流源,它可以确保LED像素点在不同亮度下都能正常工作。
3. 控制系统:LED直显屏幕通常配备一个控制系统,用于接收外部图像信号(如计算机、摄像机等设备发送的信号)并处理。
4. 像素间距:LED直显屏幕的像素间距是指相邻LED像素点之间的距离。
5. 颜色混合:LED直显屏幕通常采用红、绿、蓝(RGB)三原色LED像素点,通过不同的颜色组合实现各种颜色的显示。
6. 散热处理:LED直显屏幕在工作过程中会产生一定的热量,合理的散热设计有助于提高产品的稳定性和寿命。
随着LED 材料、驱动电路和控制系统的不断进步,LED直显技术在清晰度、亮度、色彩等方面取得了显著的提升,为各种显示场景提供了良好的解决方案。
LED液晶显示器的驱动原理简介LED液晶显示器是一种基于液晶技术和LED背光技术的显示设备。
它具有低功耗、高亮度、高对比度、快速响应和宽视角等优点,被广泛应用于电子产品中,如电视、电脑显示器、手机和平板电脑等。
本文将介绍LED液晶显示器的驱动原理,包括液晶分子的排列、驱动电路和背光灯的控制。
液晶分子的排列LED液晶显示器的核心是液晶分子的排列,通过控制液晶分子的排列来实现像素的开关。
液晶分子可分为向列型和向行型两种,它们的排列方式决定了液晶分子的光学性质。
向行型液晶的工作原理与向列型液晶类似,通过控制电场的强弱来实现液晶像素的开关。
驱动芯片通过接收来自控制电路的指令和数据,并将其转换成驱动信号,输出到液晶屏的行和列上。
通过逐行逐列的扫描方式,将驱动信号传输到每个像素上,从而实现对像素的控制。
控制电路控制电路负责与操作系统或外部设备进行通信,接收图像和视频数据,并将其转换成驱动芯片所需的指令和数据。
背光灯的控制LED液晶显示器的背光灯通常采用LED作为光源,具有高亮度和高能效的特点。
LED点阵显示屏是一种使用LED灯珠组成像素点的显示设备,可以显示文字、图像和动态效果。
需要显示一行像素点时,控制器按照预设的规律依次发送控制信号,点亮该行的LED灯珠。
通常使用的是微控制器或专门的驱动芯片,通过编程控制LED灯珠的亮灭状态。
由于LED是一种非线性元件,因此在其前端必须添加合适的电路来实现电流的稳定控制。
2. 恒流源:为了保持LED的亮度稳定,恒流源被用来提供恒定的电流给LED器件。
其中,驱动芯片是一种专门设计用于LED 驱动的集成电路,可以提供稳定的电流,并具有保护功能。
3. 保护电路:由于LED器件对过电流和过温都很敏感,所以保护电路在LED驱动电路中起着重要的作用。
保护电路一般包括过电流保护和过温保护,通过监测电流和温度来确保LED器件的安全工作。
恒流驱动器可以通过调整电压斜率的方式来保持恒定的电流输出,从而实现LED亮度的稳定控制。
LED电子显示屏驱动原理一、概述LED电子显示屏是一种广泛应用于室内外场所的显示设备,其驱动原理是通过控制LED灯的亮灭来实现图象、文字等内容的显示。
二、硬件驱动原理1. LED灯的工作原理LED(Light Emitting Diode)是一种半导体器件,其具有单向导电性和发光特性。
当正向电压施加在LED芯片上时,电子与空穴结合,能量以光的形式释放出来,产生可见光。
2. LED电子显示屏的组成LED电子显示屏由多个LED灯组成的像素点阵列构成。
每一个像素点都有一个对应的LED灯,通过控制每一个LED灯的亮灭状态,可以实现各种图象、文字的显示。
3. 驱动电路LED电子显示屏的驱动电路主要包括LED驱动芯片、电源模块和信号输入模块。
LED驱动芯片负责控制LED灯的亮灭,电源模块提供稳定的电源供电,信号输入模块接收外部信号并将其转换为驱动芯片可以识别的信号。
静态驱动是将每一个像素点的亮灭状态直接通过驱动芯片控制,适合于小尺寸的LED显示屏。
动态驱动是将像素点按照一定的规律分组,通过逐行或者逐列的方式控制,适合于大尺寸的LED显示屏。
三、软件驱动原理1. 显示内容的生成LED电子显示屏的显示内容可以通过计算机软件生成。
用户可以通过编辑软件将需要显示的内容转换为对应的二进制码或者像素点信息。
驱动芯片接收计算机发送的数据,并将其解析成对应的控制信号,控制LED灯的亮灭。
3. 控制方式LED电子显示屏的控制方式可以通过本地控制和远程控制两种方式实现。
电子显示屏工作原理电子显示屏,也称LED显示屏,是一种高亮度、高清晰度的电子设备,广泛应用于户外广告牌、电子信息显示、舞台背景等领域。
一、基本构成电子显示屏主要由发光二极管(LED)、驱动电路、控制电路和外壳等部分组成。
1. 发光二极管(LED):是电子显示屏最重要的组成部分,通过半导体材料的特性能将电能转化为光能。
3. 控制电路:控制整个显示屏的各项功能,接收外部信号,并转化为显示屏上的对应内容。
4. 外壳:保护电子显示屏的内部元件,同时具备防水、防尘、耐高温等特性。
二、工作原理电子显示屏的工作原理可以概括为电能转化为光能,具体可分为点阵驱动和矩阵驱动两种方式。
1. 点阵驱动方式点阵驱动是使用传统的7段数码管模型作为基本显示单元,通过发光二极管(LED)按照特定排列方式进行排列。
点阵驱动方式按照显示的位数可以分为4位、8位、16位等,通常使用较少的IO引脚来控制显示。
通过控制驱动电路和控制电路,发出特定的信号给LED,从而显示出相应的字符、数字或符号等。
2. 矩阵驱动方式矩阵驱动是将LED按照一定规格排列成矩阵,并使用列选和行选的方式对LED进行控制。
静态矩阵是通过显示内容设置LED的亮灭来实现;而动态矩阵是通过高频率的刷新,使得人眼看到的是连续的画面。
矩阵驱动方式相对于点阵驱动方式来说,可以实现更高的分辨率和更复杂的显示效果。
三、工作流程电子显示屏的工作流程主要包括信号输入、信号处理、列选与行选、驱动LED的亮灭。
2. 信号处理:控制电路将接收到的信号进行处理,转化为LED可以识别的信号。
3. 列选与行选:矩阵驱动方式下,控制电路对列选和行选进行控制,选择要点亮的LED。
1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
2、仅部分预览的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于点阵型LED显示可以采用共阴极或共阳极,本系统采用共阳极,其硬件电路如图1所示。
这样只需要将图形或文字的显示编码作为列信号跟对应的行信号进行逐次扫描,就可以逐行点亮点阵。
只要扫描速度大于24 Hz,由于扫描时间很快,人眼的视觉有暂留效应,就可以看到显示的是完整的图形或文字。
本次设计要完成基于单片机的LED点阵显示控制的设计,总体方案是以单片机为控制核心,通过行列驱动电路,在LED点阵屏上以左移方式显示文字。
在设计过程中驱动电路运用动态扫描显示,动态扫描简单地说就是逐行轮流点亮,这样扫描驱动电路就可以实现多行(比如16行)的同名列共用一套列驱动器。
由于动态扫描显示(并行传输)的局限性,故采用动态扫描显示(串行传输),显示模式用LED点阵屏模块作显示屏。
本次设计单片机采用AT89C51,行电路使用逐行扫描的方式,列电路使用串入并出的数据传输方式,显示屏使用由16x16的点阵LED组成的点阵模块。
硬件电路大致上可以分成单片机系统及外围电路、列驱动电路和行驱动电路以及LED 点阵阵列3部分,用到的芯片有单片机AT89C51,4线,带锁存功能的串入并出移位寄存器74LS595。
系统采用12 MHz 或更高频率的晶振,以获得较高的刷新频率,使显示更稳定。
P1口低4位与行驱动器相连,送出行选信号,P1.5~P1.7口则用来发送控制信号。
AT89C51的最高时钟脉冲频率已经达到24 MHz ,它内部已经具备了振荡电路,只要在AT89C51的两个引脚(即19、18脚)连接到简单的石英振荡晶体的2个管脚即可,同时晶体的2个管脚也要用30 pF 的电容耦合到地,如图3所示。
AT89C51的复位引脚(RESET)是第9脚,当此引脚连接高电平超过2个机器周期时,即可产生复位的动作。
以24 MHz的时钟脉冲为例,每个时钟脉冲为05μs,两个机器周期为1 μs,因此,在第9脚上连接1个2μs的高电平脉冲,即可产生复位动作。
最简单的就是只有1个电阻跟1个电容就可构成可靠复位的电路,电阻选择10 kΩ,电容选择10μF,如图4所示。
显示屏软件的主要功能是向显示屏提供显示数据,并产生各种控制信号,使屏幕按设计的要求显示。
根据软件分层次设计的原理,可把显示屏的软件系统分成两大层:第一层是底层的显示驱动程序,第二层是上层的系统应用程序。
显示驱动程序负责向点阵屏传送特定组合的显示数据,并负责产生行扫描信号和其他控制信号,配合完成LED显示屏的扫描显示工作。
显示驱动程序由显示子程序实现;系统环境设置(初始化)由系统初始化程序完成;显示效果处理等工作,则由主程序通过调用子程序来实现。
显示驱动程序在进入中断后首先要对定时器T0重新赋初值,以保证显示屏刷新率的稳定。
其次,显示驱动程序查询当前点亮的行号,从显示缓存区内读取下一行的显示数据,并通过串口发送给移位寄存器。
为消除在切换行显示数据时产生的拖尾现象,驱动程序先要关闭显示屏,即消隐,等显示数据输入输出锁存器后,再输出新的行号,重新打开显示。
系统主程序开始以后,首先是对系统环境初始化,包括设置串口、定时器、中断、端口。
然后以“卷帘出”效果显示文字或图案,停留几秒钟,接着向上滚动显示汉字或图形,停留几秒后,再左移显示汉字或图形、右移显示等。
本设计的核心单元是单片机AT89C51,所以选用单片机仿线.O 和Keil对整体设计进行软件仿真。
把编译好的源程序加载到仿真电路图中,运行程序,在点阵显示屏上按设计的显示效果依次以“卷帘入”、“左卷帘”、“右卷帘”、“卷帘出”显示结果正确。
给出了硬件的原理以及连接的方法,软件的设计流程以及部分代码,并给出了完整的电路图,结果可以正常显示汉字、图片信息,并且可动态显示。